

JCAA/JG-PP Lead-Free Solder Testing for High-Reliability Applications

Test Vehicle Assembly

(Ana) Lety Campuzano-Contreras

BAE SYSTEMS

Port Canaveral, FL April 4, 2006

Presentation Outline

DESCRIPTION OF TEST VEHICLES:

- Alloys
- Components
- Types

ASSEMBLY DETAILS:

- Process Flow
- Profiles
- Lessons learned

RESULTS

CONCLUSIONS

Objective

The objective of this presentation is to provide the assembly details for the JCAA/JG-PP Joint Test Protocol (JTP) test vehicles.

Lead-Free Solder Alloys

- Tin-silver-copper (95.5Sn3.9Ag0.6Cu or SAC) wave, reflow and hand soldering.
- Tin-silver-copper-bismuth (92.3Sn3.4Ag1.0Cu3.3Bi or SACB) - reflow and hand soldering.
- Tin-copper (stabilized) (99.3Sn0.7Cu0.05Ni or SnCu) wave and hand soldering.

Solder and Flux

Wave Soldering	Reflow Soldering	Hand Soldering
x	N/A	Flux Cored Solder RMA (No Clean)
VOC Free No Clean Flux	N/A	R ROL0 Tacky Flux
Sn3.5Ag.7Cu	X	Flux Cored Solder RMA
VOC Free No Clean Flux	ROL1	R ROL0 Tacky Flux
N/A	X	0.010 Dia. Wire
N/A	No Clean (RMA)	R ROL0 Tacky Flux
Sn37Pb X		Flux Cored Solder RMA
Type ORM0	ROL0	ORL0 ROL0 Tacky Flux
	X VOC Free No Clean Flux Sn3.5Ag.7Cu VOC Free No Clean Flux N/A N/A X	X N/A VOC Free No Clean Flux Sn3.5Ag.7Cu X VOC Free No Clean Flux N/A X N/A X N/A No Clean (RMA) X X

The recommended flux of each solder manufacturer was used.

Component Types and Finishes

COMPONENT TYPE	COMPONENT FINISH			
	SnPb			
CLCC-20	SAC			
	SACB			
PLCC-20	Sn			
TSOP-50	SnPb			
	SnCu			
TQFP-144	Sn			
TQFP-208	NiPdAu			
BGA-225	SnPb			
	SAC			
DIP-20	Sn			
	NiPdAu			
0402Cap	Sn			
0805Cap	Sn			
1206Cap	Sn			
1206Res	Sn			

Components-Secondary Test Vehicle

COMPONENT TYPE	COMPONENT FINISH
	SnPb
Hybrids #934266-501B	SAC
	SACB
CSPs	SnPb
A-CABGA1008mm-10mm-DC	SAC

JCAA/JG-PP Primary Test Vehicles

SN	Туре	Circuit Card	Reflow Solder	Wave Solder
1-41	"Manufactured- Control"	T _g ~170°C, GF, IPC-4101/26 Immersion Ag	SnPb	SnPb
72- 110	"Manufactured- SAC"	T _g ~170°C, GF, IPC-4101/26 Immersion Ag	SAC	SAC
111- 149	"Manufactured- SACB"	T _g ~170°C, GF, IPC-4101/26 Immersion Ag	SACB	SnCu
42-71	"Rework- Control"	T _g ~140°C, GF, IPC-4101/21 SnPb HASL	SnPb	SnPb
150- 177	"Rework- SAC"	T _g ~140°C, GF, IPC-4101/21 SnPb HASL	SnPb	SnPb
178- 205	"Rework- SACB"	T _g ~140°C, GF, IPC-4101/21 SnPb HASL	SnPb	SnPb

JCAA/JG-PP Secondary Test Vehicles

Туре	Circuit Card	Reflow Solder	Wave Solder
"Hybrid- Control"	T _g ~170°C, GF, IPC-4101/26 Immersion Ag	SnPb	SnPb
"Hybrid- SAC"	T _g ~170°C, GF, IPC-4101/26 Immersion Ag	SAC	SAC
"Hybrid- SACB"	T _g ~170°C, GF, IPC-4101/26 Immersion Ag	SACB	SnCu

est Vehicles

٧B

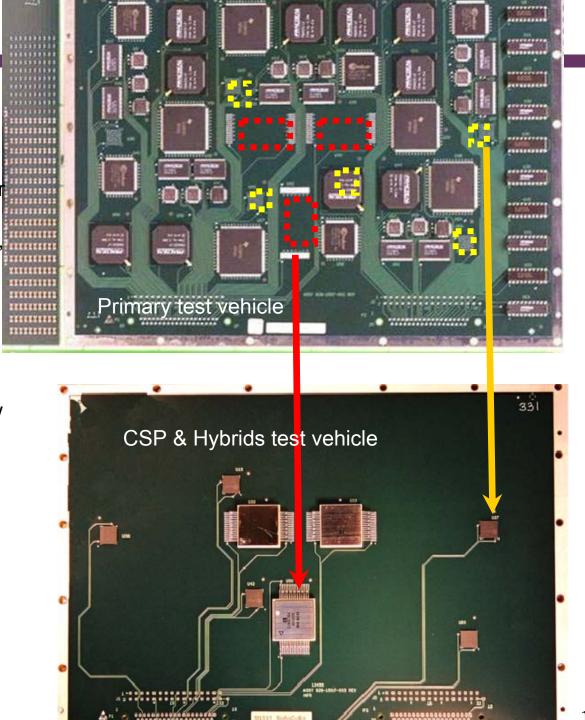
14.5"X 9"X 0.09", 6 layers Immersion silver, $T_g \sim 170$ °C, FR4 per IPC-4101/26 SnPb HASL, $T_g \sim 140$ °C, GF (rework), FR4 per IPC-4101/21

aterials

Sn3.9Ag0.6Cu (SAC) for reflow and wave soldering

Sn3.4Ag1.0Cu3.3Bi (SACB) for reflow soldering

Sn0.7Cu0.05Ni (SNIC) for wave soldering


Sn37Pb (SnPb) for reflow and wave soldering

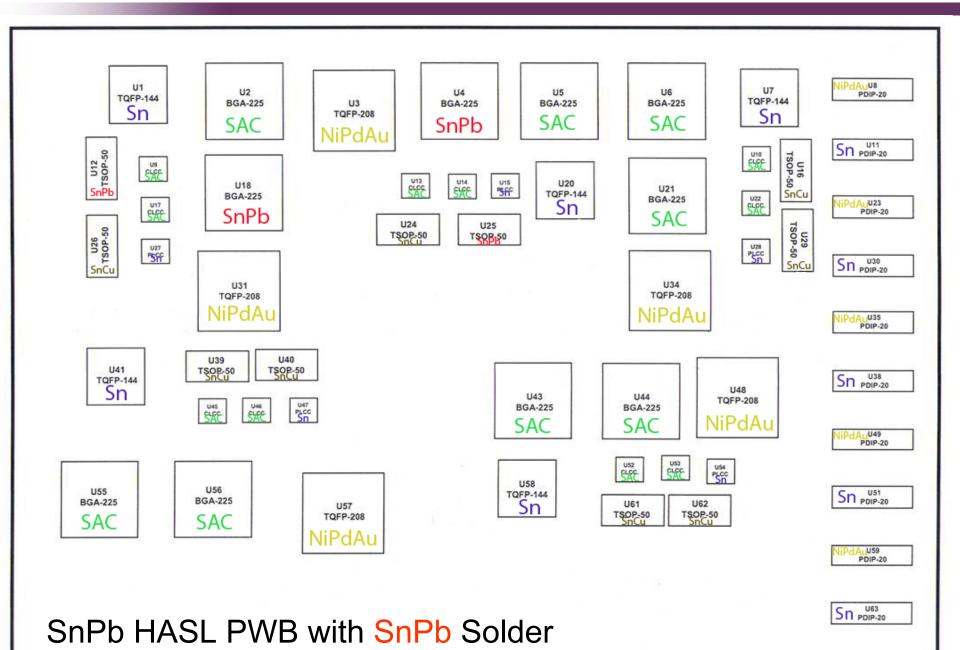
semblies

119 Manufactured

89 Reworked

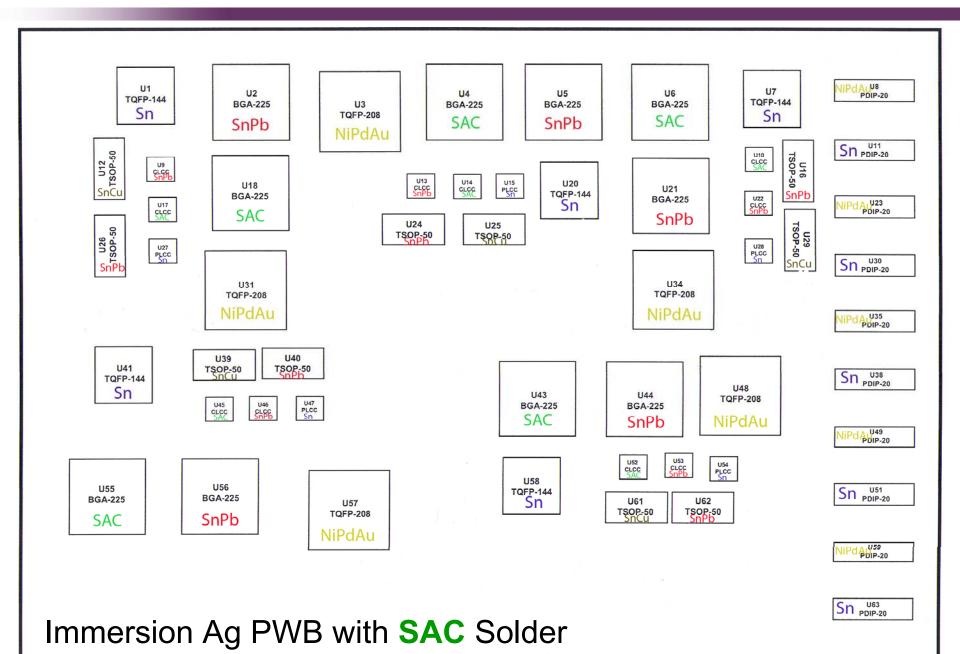
30 CSP and Hybrid

Rework Test Vehicle


1

"Rework-SAC & SACB" Test Vehicles

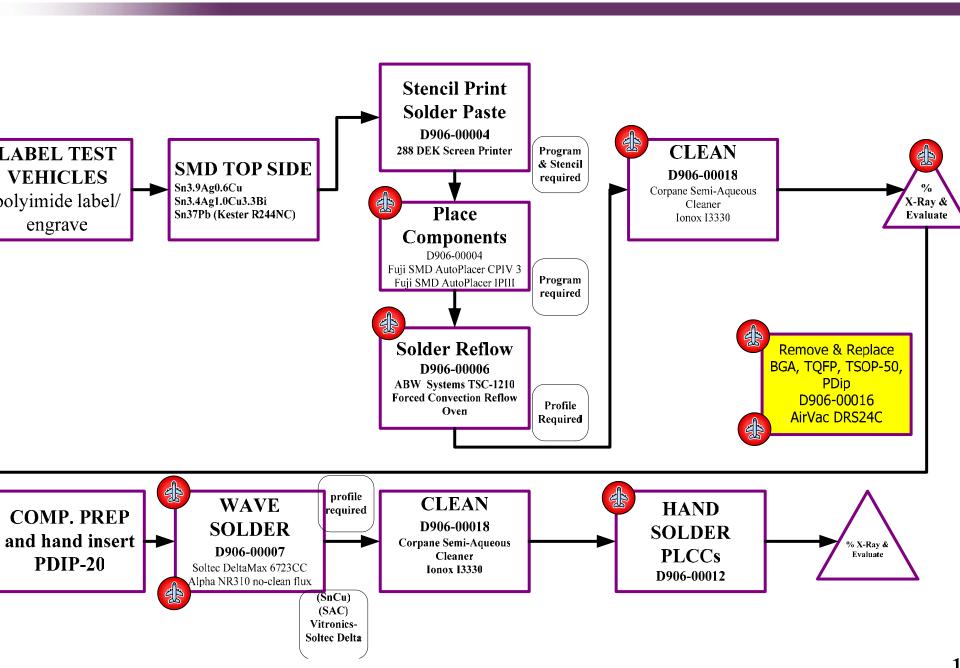
SnPb solder initially; reworked with SAC, SACB, or SnCu solder


Location	Part Number	Qty Per Board	Part Finish Before Rework	Replacement Part Finish
U25	TSOP-50	1	SnPb	SnCu
U12	TSOP-50	1	SnPb	SnCu
U57	TQFP-208	1	NiPdAu	NiPdAu
U3	TQFP-208	1	NiPdAu	NiPdAu
U18	BGA-225	1	SnPb	SAC
U4	BGA-225	1	SnPb	SAC
U59	DIP-20	1	NiPdAu	NiPdAu
U23	DIP-20	1	NiPdAu	NiPdAu

"Rework-SAC" Test Vehicles

.

"Manufactured-SAC" Test Vehicle


1

Assembly Notes

- Marking with paint dots was required to differentiate between surface finishes.
- All PLCCs were hand soldered with either SnPb, SAC, or SACB solder.
- Nitrogen was not used during reflow.
- Pb-Free wave solder with SnCu and SAC was performed at Vitronics-Soltec in New Hampshire.
- After wave solder at Vitronics, the assemblies were cleaned at Kyzen in New Hampshire.
- Solder touch-up was performed with either SnPb, SAC, SACB or SnCu solder.
- BGA rework was performed using tacky flux.
- Production traveler was used for serial number documentation.

1

Assembly Flow

Assembly Reflow Profiles

andard SnPb Profile

reheat = ~ 120 seconds

140-183°C

eak temperature = 225°C

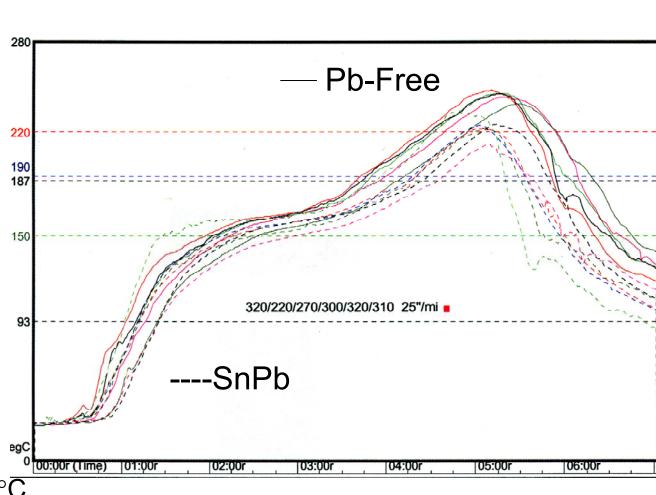
me above reflow = 60-90

amp Rate = 2-3 °C/sec

ead-Free Profile

eheat = 60-120 seconds

150-190°C


eak temperature target =

13°C

eflow:

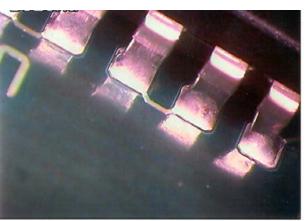
20 seconds above 230°C

80-90 seconds above 220° $\overline{ extsf{C}}$

Lessons Learned

- Reflow and wave soldering resulted in a decrease in the processing window and flux became an important parameter.
- Hand soldering is similar to SnPb after a lot of practice (learning curve).
- Additional cleaning was required after rework.
- Quality inspection yielded varied results; additional training is required.
- Smaller (0.37"X 0.37") polyimide labels did not withstand Pb-free wave soldering.
- Parts control is critical during the RoHS transition.

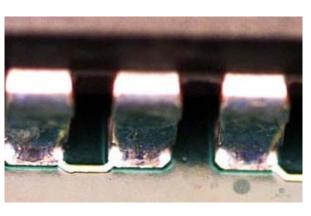
1

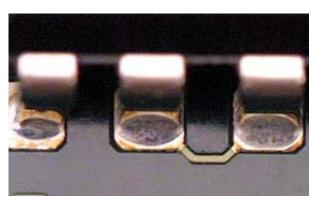


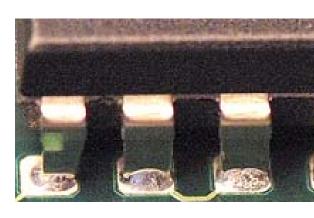
Results

Comparison of NiPdAu DIPs

Wave soldered with SnPb, SnCu, or SAC

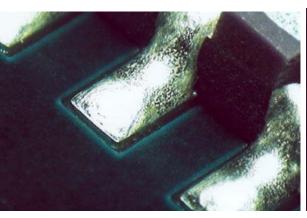

SN10: U35 with SnPb


SN121: U35 with SnCu


SN80: U35 with SAC

SN41: U59 with SnPb

SN138:U59 with SnCu



SN110: U59 with SAC

Immersion Ag PWB

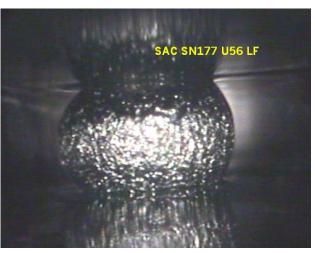
Comparison of different surface finish CLCCs

Soldered with SnPb

SN44 U17 SnPb surface finish

SN156 U17 SACsurface finish

SN182 U17
SACB surface finish


SnPb HASL PWB

Comparison of BGAs

Soldered with SnPb Solder and reflow profile

SN44 "Rework-SnPb" SnPb BGA: SnPb solder

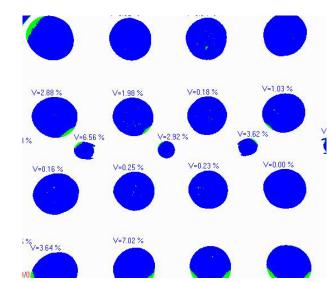
SN177 "Rework-SAC" SAC BGA: SnPb solder

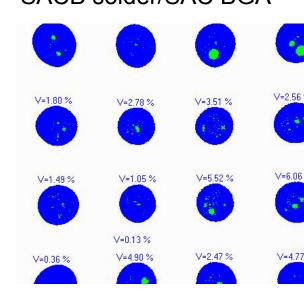
SN205 "Rework-SACB" SAC BGA: SnPb solder

SnPb HASL PWB

BGA comparison

Soldered with SnPb, SnAgCu, and SnAgCuBi




SnPb "Rework-Control" SnPb solder/SnPb BGA

V=0.74%

"Manufactured-SAC" SAC solder/SAC BGA

"Manufactured-SACB" SACB solder/SAC BGA

0.36-12.29 void percent

SIR and EMR Test Vehicles

SIR

- 46 IPC-B-24 boards (SIR)
- IPC-TM-650 Method 2.6.3.3
 - 6 boards with SAC reflow solder alloy and flux
 - 6 boards with SACB reflow solder alloy and flux
 - 6 boards with SnPb reflow solder alloy and flux
 - 6 boards with SnCu wave solder alloy and flux
 - 6 boards with SAC wave solder alloy and flux
 - 6 boards with SnPb wave solder alloy and flux
 - 5 boards with bare copper finish, no solder paste, only processed through cleaning procedures
 - 5 Boards with bare copper finish, no solder paste, passed through reflow and wave solder machines then cleaned

EMR

- 46 IPC-B-25A boards "D-comb pattern"
- IPC-TM-650 Method 2.6.14.1

Conclusions

- Assembly of high-performance electronics using Pb-free solder alloys is possible without a total retrofit of the modern factory.
- Some control of equipment may be necessary where concern for contamination from a previous SnPb process exists, such as the wave solder pot.
- Higher processing temperatures impact the soldering process window (e.g., dwell times, flux chemistry), component moisture sensitivity controls, and solder flux residue removal.
- Significant resources will be required for component configuration management to assure that incompatible metallurgies are not mixed in the factory.
- The huge potential for mixed components from suppliers will drive validation and inspection costs throughout the factory.
- Rework operations have the potential to reduce the reliability of both Pbfree and SnPh solders

Acknowledgements

The following JCAA/JG-PP companies provided technical support and/or materials that made the assembly effort possible:

- ACI Pb-free skill training for hand soldering
- BAE Systems Irving factory time and labor expenses
- Boeing Phantom Works Seattle technical support
- Florida CirTech, Inc. materials
- Global Stencil stencil services
- Heraeus materials
- Kyzen board cleaning after Pb-free wave solder
- MSL- translation of design data from Zuken Redac to GENCAD (Version 1.3).
- Rockwell-Collins board design, procurement of parts and bare boards
- Senju Solder materials
- Vitronics-Soltec wave solder machine for Pb-free portion of assembly

Contact Information:

Lety Campuzano-Contreras

ana.campuzano-contreras@baesystems.com

3131 Story Road Irving, TX 75038 (972)659-2546

For additional JCAA/JG-PP Lead Free Solder Project information, please visit the following links:

http://acqp2.nasa.gov/LFS.htm

http://www.jgpp.com/projects_index.html

DEK 288 Solder Paste Screen Printer

Component Placement:

FUJI CP IV used for placement of capacitors and resistors.

FUJI IP3 used for fine pitch, BGAs, and other parts.

Solder Reflow: ABW Systems TSC-1210

Cleaning: Corpane Semi Aqueous Cleaner

X-Ray Evaluation-: Nicolet Imaging Systems 1410нь

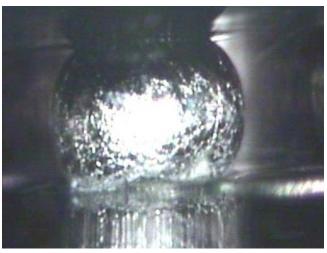
Hand Soldering

Rework (Removal and Replacement)

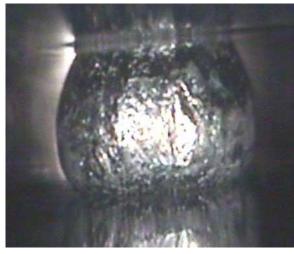
Wave Soldering: Delta-Max Machine

Vave Soldering @ Vitronics-Soltec: Delta-Wave Machine

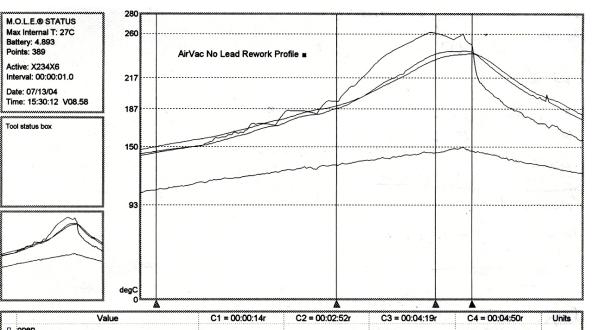
BGA removal and replacement: AIR-VAC DRS24C



Comparison of SnPb BGAs


Soldered with SnPb, SnAgCu and SnAgCuBi

SN44 U56 soldered with SnPb.



SN110 U56 soldered with SAC.

SN138 U56 soldered with SACB.

Pb-Free Rework Profile for BGA Replacement

Value	C1 = 00:00:14r	C2 = 00:02:52r	C3 = 00:04:19r	C4 = 00:04:50r	Units
open open			40.00	Y	
■ t/c2 top of U2 body	146	194	261	249	degC
board surface	108	132	144	146	degC
v/c4 under U2 BGA in pad	150	190	235	241	degC
open open					
	144	187	241	242	degC

	T Above Ref	Low = 150	Med = 217	Hi = 260	Cure Factor	Units
0	open					
0	t/c2 top of U2 body	00:05:44	00:01:41	00:00:14	0%	degC
8	board surface	00:00:00	00:00:00	00:00:00	0%	degC
0	t/c4 under U2 BGA in pad	00:06;14	00:01:37	00:00:00	0%	degC
0	open					
0	t/c6 topside under U2	00:05:43	00:01:36	00:00:00	0%	degC

	Statistics	Minimum	Minimum X	Maximum	Maximum X	Average	Std Deviation	Units
0	open							
10	t/c2 top of U2 body	143	00:00:00r	262	00:04:13r	192.7	37.1	degC
	board surface	105	00:00:00r	149	00:04:41r	129.9	11.7	degC
8	t/c4 under U2 BGA in pad	147	00:00:00r	241	00:04:46r	193.3	28.4	degC
0	open	,	sãa.				i i	i
8	t/c6 topside under U2	141	00:00:00r	243	00:04:41r	190.9	31.4	degC

Device joint target = 243°C

Device top max target = 260°C

Board target = 110°C (process starting point)

Board max = 150°C Reflow:

~97 seconds above 217°C

~75 seconds above 221°C

~44 seconds above 235°C


Ball temperature 241°C

Ramp rate 1.14°C/sec

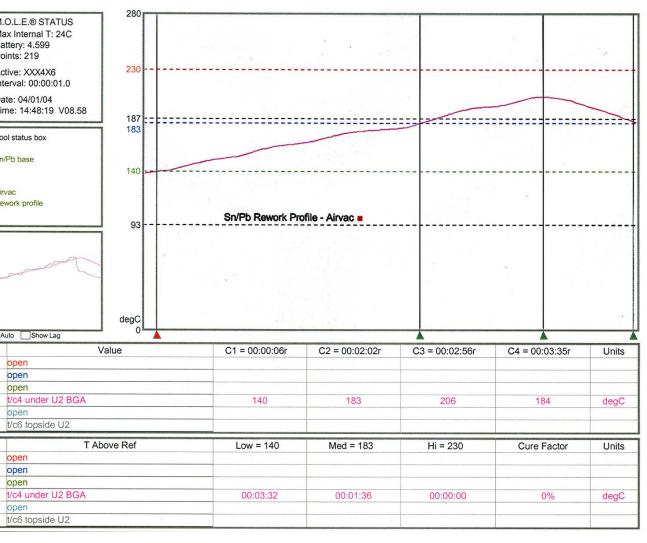
AIR-VAC DRS24C.2D

Wave Solder SnPb Profile

'Rework & Manufactured-Control'

Typical SnPb Profile

Solder Pot Temperature = 250°C

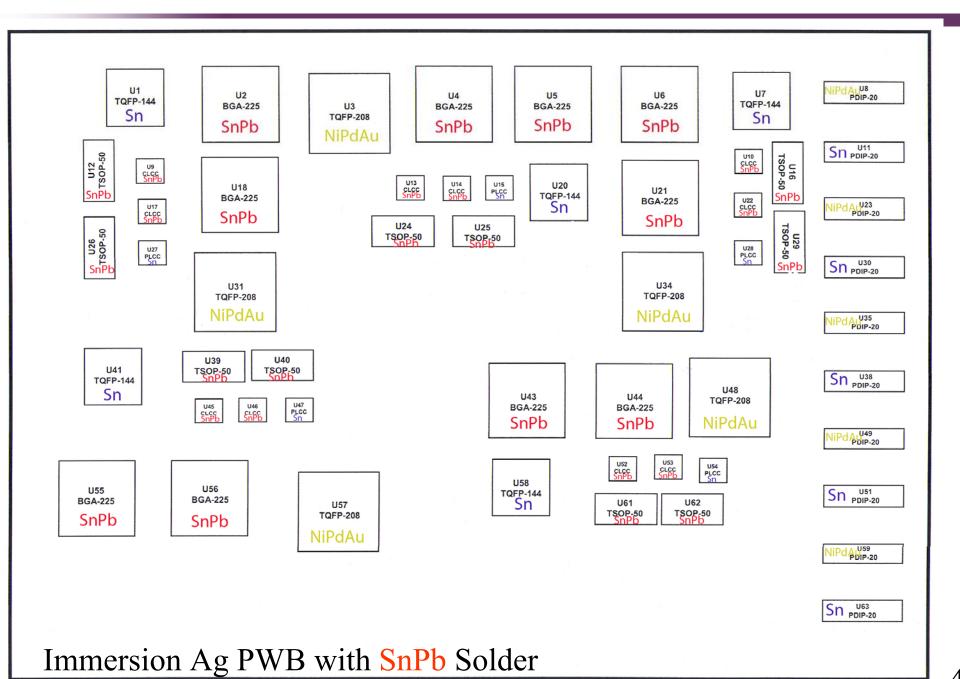

Preheat Board T = 101°C

Peak Temperature = 144°C

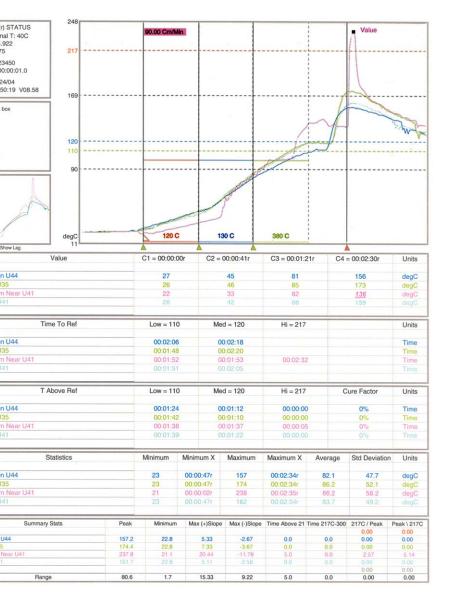
Speed: 110 cm/min

SnPb Rework Profile

AIR-VAC DRS24C.2D for BGA Removal & Replacement



Standard SnPb Rework Profile


@140-183°C
Ball Peak temperature = 206°C
Time above reflow = 96 seconds
Ramp Rate = 2-3 °C/sec

Preheat = ~ 120 seconds

"Manufactured-Control" Test Vehicles

Wave Solder Pb-Free Profile

SnCu

Solder Pot Temperature = 265°C Preheat Board T = 134°C Peak Temperature = 157°C Speed: 90 cm/min

SAC

Solder Pot Temperature = 260°C Preheat Board T = 136°C Peak Temperature = 161°C Speed: 90 cm/min

Profile provided by Vitronics-Soltec